They’re out! Like many of you, I look forward to these coming out each year. I don’t put much stock in surveys but they can be insightful and give a snapshot of the CSS zeitgeist. There are a few little nuggets in this year’s results that I find interesting. But before I get there, you’ll want to also check out what others have already written about it.
Oh, I guess that’s it — at least it’s the most formal write-up I’ve seen. There’s a little summary by Ahmad Shadeed at the end of the survey that generally rounds things up. I’ll drop in more links as I find ’em.
In no particular order…
Demographics
Josh has way more poignant thoughts on this than I do. He rightfully calls out discrepancies in gender pay and regional pay, where men are way more compensated than women (a nonsensical and frustratingly never-ending trend) and the United States boasts more $100,000 salaries than anywhere else. The countries with the highest salaries were also the most represented in survey responses, so perhaps the results are no surprise. We’re essentially looking at a snapshot of what it’s like to be a rich, white male developer in the West.
Besides pay, my eye caught the Age Group demographics. As an aging front-ender, I often wonder what we all do when we finally get to retirement age. I officially dropped from the most represented age group (30-39, 42%) a few years ago into the third most represented tier (40-49, 21%). Long gone are my days being with the cool kids (20-29, 27%).
And if the distribution is true to life, I’m riding fast into my sunset years and will be only slightly more represented than those getting into the profession. I don’t know if anyone else feels similarly anxious about aging in this industry — but if you’re one of the 484 folks who identify with the 50+ age group, I’d love to talk with you.
Before we plow ahead, I think it’s worth calling out how relatively “new” most people are to front-end development.
Wow! Forty-freaking-four percent of respondents have less than 10 years of experience. Yes, 10 years is a high threshold, but we’re still talking about a profession that popped up in recent memory.
For perspective, someone developing for 10 years came to the field around 2014. That’s just when we were getting Flexbox, and several years after the big bang of CSS 3 and HTML 5. That’s just under half of developers who never had to deal with the headaches of table layouts, clearfix hacks, image sprites, spacer images, and rasterized rounded corners. Ethan Marcotte’s seminal article on “Responsive Web Design” predates these folks by a whopping four years!
I’m not entirely sure what to make of this section. When there are so many CSS features, how do you determine which are most widely used? How do you pare it down to just 50 features? Like, are filter effects really the most widely used CSS feature? So many questions, but the results are always interesting nonetheless.
What I find most interesting are the underused features. For example, hanging-punctuation comes in dead last in usage (1.57%) but is the feature that most developers (52%) have on their reading list. (If you need some reading material on it, Chris initially published the Almanac entry for hanging-punctuation back in 2013.)
I also see Anchor Positioning at the end of the long tail with reported usage at 4.8%. That’ll go up for sure now that we have at least one supporting browser engine (Chromium) but also given all of the tutorials that have sprung up in the past few months. Yes, we’ve contributed to that noise… but it’s good noise! I think Juan published what might be the most thorough and thoughtful guide on the topic yet.
I’m excited to see Cascade Layers falling smack dab in the middle of the pack at a fairly robust 18.7%. Cascade Layers are super approachable and elegantly designed that I have trouble believing anybody these days when they say that the CSS Cascade is difficult to manage. And even though @scope is currently low on the list (4.8%, same as Anchor Positioning), I’d bet the crumpled gum wrapper in my pocket that the overall sentiment of working with the Cascade will improve dramatically. We’ll still see “CSS is Awesome” memes galore, but they’ll be more like old familiar dad jokes in good time.
Interestingly enough, viewport units come in at Number 11 with 44.2% usage… which lands them at Number 2 for most experience that developers have with CSS layout. Does that suggest that layout features are less widely used than CSS filters? Again, so many questions.
Frameworks
How many of you were surprised that Tailwind blew past Bootstrap as Top Dog framework in CSS Land? Nobody, right?
More interesting to me is that “No CSS framework” clocks in at Number 13 out of 21 list frameworks. Sure, its 46 votes are dwarfed by the 138 for Material UI at Number 10… but the fact that we’re seeing “no framework” as a ranking option at all would have been unimaginable just three years ago.
The same goes for CSS pre/post-processing. Sass (67%) and PostCSS (38%) are the power players, but “None” comes in third at 19%, ahead of Less, Stylus, and Lightning CSS.
It’s a real testament to the great work the CSSWG is doing to make CSS better every day. We don’t thank the CSSWG enough — thank you, team! Y’all are heroes around these parts.
CSS Usage
Josh already has a good take on the fact that only 67% of folks say they test their work on mobile phones. It should be at least tied with the 99% who test on desktops, right? Right?! Who knows, maybe some responses consider things like “Responsive Design Mode” desktop features to be the equivalent of testing on real mobile devices. I find it hard to believe that only 67% of us test mobile.
Oh, and The Great Divide is still alive and well if the results are true and 53% write more JavsScript than CSS in their day-to-day.
This is where I get to toot our own horn a bit because CSS-Tricks continues to place first among y’all when it comes to the blogs you follow for CSS happenings.
I’m also stoked to see Smashing Magazine right there as well. It was fifth in 2023 and I’d like to think that rise is due to me joining the team last year. Correlation implies causation, amirite?
But look at Kevin Powell and Josh in the Top 10. That’s just awesome. It speaks volumes about their teaching talents and the hard work they put into “helping people fall in love with CSS” as Kevin might say it. I was able to help Kevin with a couple of his videos last year (here’s one) and can tell you the guy cares a heckuva lot about making CSS approachable and fun.
Honestly, the rankings are not what we live for. Now that I’ve been given a second wind to work on CSS-Tricks, all I want is to publish things that are valuable to your everyday work as front-enders. That’s traditionally happened as a stream of daily articles but is shifting to more tutorials and resources, whether it’s guides (we’ve published four new ones this year), taking notes on interesting developments, spotlighting good work with links, or expanding the ol’ Almanac to account for things like functions, at-rules, and pseudos (we have lots of work to do).
My 2024 Pick
No one asked my opinion but I’ll say it anyway: Personal blogging. I’m seeing more of us in the front-end community getting back behind the keyboards of their personal websites and I’ve never been subscribed to more RSS feeds than I am today. Some started blogging as a “worry stone” during the 2020 lockdown. Some abandoned socials when Twitter X imploded. Some got way into the IndieWeb. Webrings and guestbooks are even gaining new life. Sure, it can be tough keeping up, but what a good problem to have! Let’s make RSS king once and for all.
That’s a wrap!
Seriously, a huge thanks to Sacha Greif and the entire Devographics team for the commitment to putting this survey together every year. It’s always fun. And the visualizations are always to die for.
You could provide contextual information, like stating the number of notifications, by giving a space-separated list of ids to aria-labelledby.
<button aria-labelledby="notifications-count notifications-label">
<!-- bell icon here -->
<span id="notifications-count">3</span>
</button>
<div role="tooltip" id="notifications-label">Notifications</div>
Providing contextual description
If your tooltip provides a contextual description of the icon, you should use aria-describedby. But, when you do this, you also need to provide an accessible name for the icon.
In this case, Heydon recommends including the label as the text content of the button. This label would be hidden visually from sighted users but read for screen readers.
Then, you can add aria-describedby to include the auxiliary description.
<button class="notifications" aria-describedby="notifications-desc">
<!-- icon for bell here -->
<span id="notifications-count">3</span>
<span class="visually-hidden">Notifications</span>
</button>
<div role="tooltip" id="notifications-desc">View and manage notifications settings</div>
Here, screen readers would say “3 notifications” first, followed by “view and manage notifications settings” after a brief pause.
Additional tooltip dos and don’ts
Here are a couple of additional points you should be aware of:
Do:
Use aria-labellebdy or aria-describedby attributes depending on the type of tooltip you’re building.
Use the tooltip role even if it
In this article, I try to summarize the best practices mentioned by various accessibility experts and their work (like this, this, and this) into a single article that’s easy to read, understand, and apply.
Let’s begin.
What are tooltips?
Tooltips are used to provide simple text hints for UI controls. Think of them as tips for tools. They’re basically little bubbles of text content that pop up when you hover over an unnamed control (like the bell icon in Stripe).
If you prefer more of a formal definition, Sarah Highley provides us with a pretty good one:
A “tooltip” is a non-modal (or non-blocking) overlay containing text-only content that provides supplemental information about an existing UI control. It is hidden by default, and becomes available on hover or focus of the control it describes.
She further goes on to say:
That definition could even be narrowed down even further by saying tooltips must provide only descriptive text.
This narrowed definition is basically (in my experience) how every accessibility expert defines tooltips:
Heydon Pickering takes things even further, saying: If you’re thinking of adding interactive content (even an ok button), you should be using dialog instead.
If your tooltip is used to label an icon — using only one or two words — you should use the aria-labelledby attribute to properly label it since it is attached to nothing else on the page that would help identify it.
You could provide contextual information, like stating the number of notifications, by giving a space-separated list of ids to aria-labelledby.
<button aria-labelledby="notifications-count notifications-label">
<!-- bell icon here -->
<span id="notifications-count">3</span>
</button>
<div role="tooltip" id="notifications-label">Notifications</div>
Providing contextual description
If your tooltip provides a contextual description of the icon, you should use aria-describedby. But, when you do this, you also need to provide an accessible name for the icon.
In this case, Heydon recommends including the label as the text content of the button. This label would be hidden visually from sighted users but read for screen readers.
Then, you can add aria-describedby to include the auxiliary description.
<button class="notifications" aria-describedby="notifications-desc">
<!-- icon for bell here -->
<span id="notifications-count">3</span>
<span class="visually-hidden">Notifications</span>
</button>
<div role="tooltip" id="notifications-desc">View and manage notifications settings</div>
Here, screen readers would say “3 notifications” first, followed by “view and manage notifications settings” after a brief pause.
Additional tooltip dos and don’ts
Here are a couple of additional points you should be aware of:
Do:
Use aria-labellebdy or aria-describedby attributes depending on the type of tooltip you’re building.
Don’t use the aria-haspopup attribute with the tooltip role because aria-haspopup signifies interactive content while tooltip should contain non-interactive content.
Don’t include essential content inside tooltips because some screen readers may ignore aria-labelledby or aria-describedby. (It’s rare, but possible.)
Tooltip limitations and alternatives
Tooltips are inaccessible to most touch devices because:
users cannot hover over a button on a touch device, and
users cannot focus on a button on a touch device.
The best alternative is not to use tooltips, and instead, find a way to include the label or descriptive text in the design.
If the “tooltip” contains a lot of content — including interactive content — you may want to display that information with a Toggletip (or just use a element).
Toggletips exist to reveal information balloons. Often they take the form of little “i” icons.
These informational icons should be wrapped within a element. When opened, screen readers can announce the text contained in it through a live region with the status role.
Speaking anymore about toggletips detracts this article from tooltips so I’ll point you to Heydon’s “Tooltips and Toggletips” article if you’re interested in chasing this short rabbit hole.
That’s all you need to know about tooltips and their current best practices!
Welcome to our roundup of the best new fonts we’ve found online in the last four weeks. In this month’s selection we have a mixture of different styles, from highly practical serifs, to experimental display typefaces. Enjoy!
GT Flaire aims to translate the bold expressive curves of calligraphy into digital form. It blends profesionalism with a lively, playful style to bridge the gap between business and creativity. It’s an excellent choice for corporations hoping to create a more relaxed brand image.
Paramount Rounded
Paramount Rounded is a humanist-geometric typeface blending neo-futuristic style with geometric traditions. Featuring versatile alternates, it adapts from sleek spaceship branding to everyday packaging. Also available in a regular, non-rounded version, Paramount Rounded is a great option for branding.
Wulkan
Wulkan was designed a decade ago when the designer needed an expressive serif, couldn’t find one, and ended up creating his own. It started out as a display font; the latest iteration is a complete redesign that includes text and heading variations, new weights, and variable font options.
Groutpix
Groutpix is an extreme pixel-based font that references the graphics in dance music. It works best in small doses, with wide letter-spacing. It would be an excellent logo font for the right combination of letters.
Callas
Callas is a high-contrast typeface with a fresh, lively appearance, blending classic forma with the elegance of modernist styles. Its design is distinguished and crisp, offering a clean look with a hint of extravagance, ideal for refined yet expressive typography.
Gelatic
Gelatic is a vibrant display sans with a sunny outlook. The playful, positive shapes are ideal for relaxed, friendly logotypes. There are six styles and a variable font option for flexibility.
Zybo Pop
Zybo Pop is a playful, bubble-style graffiti font that delivers a bold, confident aesthetic to any project. It‘s amazing that a style that dates back to the late 1970s can still feel fresh and young, but it does. It’s a great choice for editorials, posters, and lifestyle branding.
RT Dromo
RT Dromo is a geometric sans that was inspired by vintage 1980s concert tickets. It combines robust, functional shapes with contemporary digital aesthetics for a balanced, retro-charm. It’s available in 16 fonts across four weights, including italics and monospace styles.
Aukio
Aukio, which means “square” in Finnish, is a high-contrast display typeface inspired by Nordic calligraphy. Its angular, squarish forms blend traditional humanistic shapes with a digital approach, creating a contemporary design suited for striking titles.
Apex Bound
Apex Bound is an graffiti font with Solid, Outline, Inner Shadow and Extrude styles that allow you to create depth, volume and definition for dynamic street art-style typography.
Melun
Melun is a geometric sans-serif with retro flair. It comes in three distinct styles: Normal, High, and Display, each with a range of different weights and accompany italics. It has a futuristic quality that makes it excellent for posters and editorial work.
Editora
Editora is a modern take on neoclassical styles. Designed for editorial design where elegance is required. Editora has 18 styles, with a range of weights, making it as practical as it is charming.
Julia
Julia is a cursive font that blends elegance, fluidity, and readability. Its refined loops, swashes and clean forms create a modern take on a classic look. It’s currently only available in a Light weight, but more weights are on the way.
Pulso
Pulso is one of DSType’s Next Fonts project — essentially beta releases of upcoming fonts. Designed for demanding display conditions, from screens to print, Pulso features three weights plus italics, and large text versions. Pulso will be finalised in 2025 with full language support but you can get early access now.
Fox Gavin
Fox Gavin is a playful font that’s excellent for children’s branding. It comes in four styles for layering and is perfect for display type, logos, T-shirts, and any time you need an eye-catching, friendly typeface.
You’d be forgiven for thinking coding up both a dark and a light mode at once is a lot of work. You have to remember @media queries based on prefers-color-scheme as well as extra complications that arise when letting visitors choose whether they want light or dark mode separately from the OS setting. And let’s not forget the color palette itself! Switching from a “light” mode to a “dark” mode may involve new variations to get the right amount of contrast for an accessible experience.
It is indeed a lot of work. But I’m here to tell you it’s now a lot simpler with modern CSS!
Default HTML color scheme(s)
We all know the “naked” HTML theme even if we rarely see it as we’ve already applied a CSS reset or our favorite boilerplate CSS before we even open localhost. But here’s a news flash: HTML doesn’t only have the standard black-on-white theme, there is also a native white-on-black version.
If you want to create a dark mode interface, this is a great base to work with and saves you from having to account for annoying details, like dark inputs, buttons, and other interactive elements.
Switching color schemes automatically based on OS preference
Without any @mediaqueries — or any other CSS at all — if all we did was declare color-scheme: light dark on the root element, the page will apply either the light or dark color scheme automatically by looking at the visitor’s operating system (OS) preferences. Most OSes have a built-in accessibility setting for your preferred color scheme — “light”, “dark”, or even “auto” — and browsers respect that setting.
html {
color-scheme: light dark;
}
We can even accomplish this without CSS directly in the HTML document in a tag:
<meta name="color-scheme" content="light dark">
Whether you go with CSS or the HTML route, it doesn’t matter — they both work the same way: telling the browser to make both light and dark schemes available and apply the one that matches the visitor’s preferences. We don’t even need to litter our styles with prefers-color-scheme instances simply to swap colors because the logic is built right in!
You can apply light or dark values to the color-scheme property. At the same time, I’d say that setting color-scheme: light is redundant, as this is the default color scheme with or without declaring it.
You can, of course, control the tag or the CSS property with JavaScript.
There’s also the possibility of applying the color-scheme property on specific elements instead of the entire page in one fell swoop. Then again, that means you are required to explicitly declare an element’s color and background-color properties; otherwise the element is transparent and inherits its text color from its parent element.
What values should you give it? Try:
Default text and background color variables
The “black” colors of these native themes aren’t always completely black but are often off-black, making the contrast a little easier on the eyes. It’s worth noting, too, that there’s variation in the blackness of “black” between browsers.
What is very useful is that this default not-pure-black and maybe-not-pure-white background-color and text color are available as variables. They also flip their color values automatically with color-scheme!
They are: Canvas and CanvasText.
These two variables can be used anywhere in your CSS to call up the current default background color (Canvas) or text color (CanvasText) based on the current color scheme. If you’re familiar with the currentColor value in CSS, it seems to function similarly. CanvasText, meanwhile, remains the default text color in that it can’t be changed the way currentColor changes when you assign something to color.
In the following examples, the only change is the color-scheme property:
Not bad! There are many, many more of these system variables. They are case-insensitive, often written in camelCase or PascalCase for readability. MDN lists 19 variables and I’m dropping them in below for reference.
Open to view 19 system color names and descriptions
AccentColor: The background color for accented user interface controls
AccentColorText: The text color for accented user interface controls
ActiveText: The text color of active links
ButtonBorder: The base border color for controls
ButtonFace: The background color for controls
ButtonText: The text color for controls
Canvas: The background color of an application’s content or documents
CanvasText: The text color used in an application’s content or documents
Field: The background color for input fields
FieldText: The text color inside form input fields
GrayText: The text color for disabled items (e.g., a disabled control)
Highlight: The background color for selected items
HighlightText: The text color for selected items
LinkText: The text color used for non-active, non-visited links
Mark: The background color for text marked up in a element
MarkText: The text color for text marked up in a element
SelectedItem: The background color for selected items (e.g., a selected checkbox)
SelectedItemText: The text color for selected items
VisitedText: The text visited links
Cool, right? There are many of them! There are, unfortunately, also discrepancies as far as how these color keywords are used and rendered between different OSes and browsers. Even though “evergreen” browsers arguably support all of them, they don’t all actually match what they’re supposed to, and fail to flip with the CSS color-scheme property as they should.
Egor Kloos (also known as dutchcelt) is keeping an eye on the current status of system colors, including which ones exist and the browsers that support them, something he does as part of a classless CSS framework cleverly called system.css.
CodePen Embed Fallback
Declaring colors for both modes together
OK good, so now you have a page that auto-magically flips dark and light colors according to system preferences. Whether you choose to use these system colors or not is up to you. I just like to point out that “dark” doesn’t always have to mean pure “black” just as “light” doesn’t have to mean pure “white.” There are lots more colors to pair together!
But what’s the best or simplest way to declare colors so they work in both light and dark mode?
In my subjective reverse-best order:
Third place: Declare color opacity
You could keep all the same background colors in dark and light modes, but declare them with an opacity (i.e. rgb(128 0 0 / 0.5) or #80000080). Then they’ll have the Canvas color shine through.
It’s unusable in this way for text colors, and you may end up with somewhat muted colors. But it is a nice easy way to get some theming done fast. I did this for the code blocks on this old light and dark mode demo.
Second place: Use color-mix()
Like this:
color-mix(in oklab, Canvas 75%, RebeccaPurple);
Similar (but also different) to using opacity to mute a color is mixing colors in CSS. We can even mix the system color variables! For example, one of the colors can be either Canvas or CanvasText so that the background color always mixes with Canvas and the text color always mixes with CanvasText.
We now have the CSS color-mix() function to help us with this. The first argument in the function defines the color space where the color mixing happens. For example, we can tell the function that we are working in the OKLAB color space, which is a rectangular color space like sRGB making it ideal to mix with sRGB color values for predictable results. You can certainly mix colors from different color spaces — the OKLAB/sRGB combination happens to work for me in this instance.
The second and third arguments are the colors you want to mix, and in what proportion. Proportions are optional but expressed in percentages. Without declaring a proportion, the mix is an even 50%-50% split. If you add percentages for both colors and they don’t match up to 100%, it does a little math for you to prevent breakages.
The color-mix() approach is useful if you’re happy to keep the same hues and color saturations regardless of whether the mode is light or dark.
In this example, as you change the value of the hue slider, you’ll see color changes in the themed boxes, following the theme color but mixed with Canvas and CanvasText:
CodePen Embed Fallback
You may have noticed that I used OKLCH and HSL color spaces in that last example. You may also have noticed that the HSL-based theme color and the themed paragraph were a lot more “flashy” as you moved the hue slider.
I’ve declared colors using a polar color space, like HSL, for years, loving that you can easily take a hue and go up or down the saturation and lightness scales based on need. But, I concede that it’s problematic if you’re working with multiple hues while trying to achieve consistent perceived lightness and saturation across them all. It can be difficult to provide ample contrast across a spectrum of colors with HSL.
The OKLCH color space is also polar just like HSL, with the same benefits. You can pick your hue and use the chroma value (which is a bit like saturation in HSL) and the lightness scales accurately in the same way. Both OKLCH and OKLAB are designed to better match what our eyes perceive in terms of brightness and color compared to transitioning between colors in the sRGB space.
While these color spaces may not explicitly answer the age-old question, Is my blue the same as your blue? the colors are much more consistent and require less finicking when you decide to base your whole website’s palette on a different theme color. With these color spaces, the contrasts between the computed colors remain much the same.
First place (winner!): Use light-dark()
Like this:
light-dark(lavender, saddlebrown);
With the previous color-mix() example, if you choose a pale lavender in light mode, its dark mode counterpart is very dark lavender.
The light-dark() function, conversely, provides complete control. You might want that element to be pale lavender in light mode and a deep burnt sienna brown in dark mode. Why not? You can still use color-mix() within light-dark() if you like — declare the colors however you like, and gain much more fine-grained control over your colors.
Feel free to experiment in the following editable demo:
CodePen Embed Fallback
Using color-scheme: light dark; — or the corresponding meta tag in HTML on your page —is a prerequisite for the light-dark() function because it allows the function to respect a person’s system preference, or whichever single light or dark value you have set on color-scheme.
Another consideration is that light-dark() is newly available across browsers, with just over 80% coverage across all users at the time I’m writing this. So, you might consider including a fallback in your CSS for browsers that lack support for the function.
What makes using color-scheme and light-dark() better than using @media queries?
@media queries have been excellent tools, but using them to query prefers-color-scheme only ever follows the preference set within the person’s operating system. This is fine until you (rightfully) want to offer the visitor more choices, decoupled from whether they prefer the UI on their device to be dark or light.
We’re already capable of doing that, of course. We’ve become used to a lot of jiggery-pokery with extra CSS classes, using duplicated styles, or employing custom properties to make it happen.
The joy of using color-scheme is threefold:
It gives you the basic monochrome dark mode for free!
It can natively do the mode switching based on OS mode preference.
You can use JavaScript to toggle between light and dark mode, and the colors declared in the light-dark() functions will follow it.
Light, dark, and auto mode controls
Essentially, all we are doing is setting one of three options for whether the color-scheme is light, dark, or updates auto-matically.
I advise offering all three as discrete options, as it removes some complications for you! Any new visitor to the site will likely be in auto mode because accepting the visitor’s OS setting is the least jarring default state. You then give that person the choice to stay with that or swap it out for a different color scheme. This way, there’s no need to sniff out what mode someone prefers to, for example, display the correct icon on a toggle and make it perform the correct action. There is also no need to keep an event listener on prefers-color-scheme in case of changes — your color-scheme: light dark declaration in CSS handles that for you.
Adjusting color-scheme in pure CSS
Yes, this is totally possible! But the approach comes with a few caveats:
You can’t use — only radio inputs, or in a element.
It only works on a per page basis, not per website, which means changes are lost on reload or refresh.
The browser needs to support the :has() pseudo-selector. Most modern browsers do, but some folks using older devices might miss out on the experience.
Using the :has() pseudo-selector
This approach is almost alarmingly simple and is fantastic for a simple one-pager! Most of the heavy lifting is done with this:
The second and third rulesets above look for an attribute called value on any element that has “light” or “dark” assigned to it, then change the color-scheme to match only if that element is :checked.
This approach is not very efficient if you have a huge page full of elements. In those cases, it’s better to be more specific. In the following two examples, the CSS selectors check for value only within an element containing id="mode-switcher".
html:has(#mode-switcher [value="light"]:checked) { color-scheme: light }
/* Did you know you don't need the ";" for a one-liner? Now you do! */
Using a element:
CodePen Embed Fallback
Using :
CodePen Embed Fallback
We could theoretically use checkboxes for this, but since checkboxes are not supposed to be used for mutually exclusive options, I won’t provide an example here. What happens in the case of more than one option being checked? The last matching CSS declaration wins (which is dark in the examples above).
JavaScript should only do what only JavaScript can do.
This is exactly that kind of situation.
If you want to allow visitors to change the color scheme using buttons, or you would like the option to be saved the next time the visitor comes to the site, then we do need at least some JavaScript. Rather than using the :has() pseudo-selector in CSS, we have a few alternative approaches for changing the color-scheme when we add JavaScript to the mix.
Using tags
If you have set your color-scheme within a meta tag in the of your HTML:
<meta name="color-scheme" content="light dark">
…you might start by making a useful constant like so:
And then you can manipulate that, assigning it light or dark as you see fit:
colorScheme.setAttribute("content", "light"); // to light mode
colorScheme.setAttribute("content", "dark"); // to dark mode
colorScheme.setAttribute("content", "light dark"); // to auto mode
This is a very similar approach to using tags but is different if you are setting the color-scheme property in CSS:
html { color-scheme: light dark; }
Instead of setting a colorScheme constant as we just did in the last example with the tag, you might select the element instead:
const html = document.querySelector('html');
Now your manipulations look like this:
html.style.setProperty("color-scheme", "light"); // to light mode
html.style.setProperty("color-scheme", "dark"); // to dark mode
html.style.setProperty("color-scheme", "light dark"); // to auto mode
I like to turn those manipulations into functions so that I can reuse them:
function switchAuto() {
html.style.setProperty("color-scheme", "light dark");
}
function switchLight() {
html.style.setProperty("color-scheme", "light");
}
function switchDark() {
html.style.setProperty("color-scheme", "dark");
}
Alternatively, you might like to stay as DRY as possible and do something like this:
The following demo shows how this JavaScript-based approach can be used with buttons, radio buttons, and a element. Please note that not all of the controls are hooked up to update the UI — the demo would end up too complicated since there’s no world where all three types of controls would be used in the same UI!
CodePen Embed Fallback
I opted to use onchange and onclick in the HTML elements mainly because I find them readable and neat. There’s nothing wrong with instead attaching a change event listener to your controls, especially if you need to trigger other actions when the options change. Using onclick on a button doesn’t only work for clicks, the button is still keyboard-focusable and can be triggered with Spacebar and Enter too, as usual.
Remembering the selection for repeat visits
The biggest caveat to everything we’ve covered so far is that this only works once. In other words, once the visitor has left the site, we’re doing nothing to remember their color scheme preference. It would be a better user experience to store that preference and respect it anytime the visitor returns.
The Web Storage API is our go-to for this. And there are two available ways for us to store someone’s color scheme preference for future visits.
localStorage
Local storage saves values directly on the visitor’s device. This makes it a nice way to keep things off your server, as the stored data never expires, allowing us to call it anytime. That said, we’re prone to losing that data whenever the visitor clears cookies and cache and they’ll have to make a new selection that is freshly stored in localStorage.
You pick a key name and give it a value with .setItem():
localStorage.setItem("mode", "dark");
The key and value are saved by the browser, and can be called up again for future visits:
const mode = localStorage.getItem("mode");
You can then use the value stored in this key to apply the person’s preferred color scheme.
sessionStorage
Session storage is thrown away as soon as a visitor browses away to another site or closes the current window/tab. However, the data we capture in sessionStorage persists while the visitor navigates between pages or views on the same domain.
Personally, I started with sessionStorage because I wanted my site to be as simple as possible, and to avoid anything that would trigger the need for a GDPR-compliant cookie banner if we were holding onto the person’s preference after their session ends. If most of your traffic comes from new visitors, then I suggest using sessionStorage to prevent having to do extra work on the GDPR side of things.
That said, if your traffic is mostly made up of people who return to the site again and again, then localStorage is likely a better approach. The convenience benefits your visitors, making it worth the GDPR work.
The following example shows the localStorage approach. Open it up in a new window or tab, pick a theme other than what’s set in your operating system’s preferences, close the window or tab, then re-open the demo in a new window or tab. Does the demo respect the color scheme you selected? It should!
CodePen Embed Fallback
Choose the “Auto” option to go back to normal.
If you want to look more closely at what is going on, you can open up the developer tools in your browser (F12 for Windows, CTRL+ click and select “Inspect” for macOS). From there, go into the “Application” tab and locate https://cdpn.io in the list of items stored in localStorage. You should see the saved key (mode) and the value (dark or light). Then start clicking on the color scheme options again and watch the mode update in real-time.
Accessibility
Congratulations! If you have got this far, you are considering or already providing versions of your website that are more comfortable for different people to use.
For example:
People with strong floaters in their eyes may prefer to use dark mode.
People with astigmatism may be able to focus more easily in light mode.
So, providing both versions leaves fewer people straining their eyes to access the content.
Contrast levels
I want to include a small addendum to this provision of a light and dark mode. An easy temptation is to go full monochrome black-on-white or white-on-black. It’s striking and punchy! I get it. But that’s just it — striking and punchy can also trigger migraines for some people who do a lot better with lower contrasts.
Providing high contrast is great for the people who need it. Some visual impairments do make it impossible to focus and get a sharp image, and a high contrast level can help people to better make out the word shapes through a blur. Minimum contrast levels are important and should be exceeded.
Thankfully, alongside other media queries, we can also query prefers-contrast which accepts values for no-preference, more, less, or custom.
In the following example (which uses :has() and color-mix()), a element is displayed to offer contrast settings. When “Low” is selected, a filter of contrast(75%) is placed across the page. When “High” is selected, CanvasText and Canvas are used unmixed for text color and background color:
CodePen Embed Fallback
Adding a quick high and low contrast theme gives your visitors even more choice for their reading comfort. Look at that — now you have three contrast levels in both dark and light modes — six color schemes to choose from!
ARIA-pressed
ARIA stands for Accessible Rich Internet Applications and is designed for adding a bit of extra info where needed to screen readers and other assistive tech.
The words “where needed” do heavy lifting here. It has been said that, like apostrophes, no ARIA is better than bad ARIA. So, best practice is to avoid putting it everywhere. For the most part (with only a few exceptions) native HTML elements are good to go out of the box, especially if you put useful text in your buttons!
The little bit of ARIA I use in this demo is for adding the aria-pressed attribute to the buttons, as unlike a radio group or select element, it’s otherwise unclear to anyone which button is the “active” one, and ARIA helps nicely with this use case. Now a screen reader will announce both its accessible name and whether it is in a pressed or unpressed state along with a button.
Following is an example code snippet with all the ARIA code bolded — yes, suddenly there’s lots more! You may find more elegant (or DRY-er) ways to do this, but showing it this way first makes it more clear to demonstrate what’s happening.
Our buttons have ids, which we have used to target them with some more handy consts at the top. Each time we switch mode, we make the button’s aria-pressed value for the selected mode true, and the other two false:
On load, the buttons have a default setting, which is when the “Auto” mode button is active. Should there be any other mode in the localStorage, we pick it up immediately and run either switchLight() or switchDark(), both of which contain the aria-pressed changes relevant to that mode.
Finally, we have a nice little button switcher, with its state clearly shown and announced, that remembers your choice when you come back to it. Done!
CodePen Embed Fallback
Outroduction
Or whatever the opposite of an introduction is…
…don’t let yourself get dragged into the old dark vs light mode argument. Both are good. Both are great! And both modes are now easy to create at once. At the start of your next project, work or hobby, do not give in to fear and pick a side — give both a try, and give in to choice.
A whole bunch of years ago, we posted on this idea here on CSS-Tricks. We figured it was time to update that and do the subject justice.
Imagine a scenario where you need to split a layout in half. Content on the left and content on the right. Basically two equal height columns are needed inside of a container. Each side takes up exactly half of the container, creating a distinct break between one. Like many things in CSS, there are a number of ways to go about this and we’re going to go over many of them right now!
One simple way we can create the appearance of a changing background is to use gradients. Half of the background is set to one color and the other half another color. Rather than fade from one color to another, a zero-space color stop is set in the middle.
This works with a single container element. However, that also means that it will take working with floats or possibly some other layout method if content needs to fill both sides of the container.
CodePen Embed Fallback
Using Absolute Positioning
Another route might be to set up two containers inside of a parent container, position them absolutely, split them up in halves using percentages, then apply the backgrounds. The benefit here is that now we have two separate containers that can hold their own content.
CodePen Embed Fallback
Absolute positioning is sometimes a perfect solution, and sometimes untenable. The parent container here will need to have a set height, and setting heights is often bad news for content (content changes!). Not to mention absolute positioned elements are out of the document flow. So it would be hard to get this to work while, say, pushing down other content below it.
Using (fake) Tables
Yeah, yeah, tables are so old school (not to mention fraught with accessibility issues and layout inflexibility). Well, using the display: table-cell; property can actually be a handy way to create this layout without writing table markup in HTML. In short, we turn our semantic parent container into a table, then the child containers into cells inside the table — all in CSS!
CodePen Embed Fallback
You could even change the display properties at breakpoints pretty easily here, making the sides stack on smaller screens. display: table; (and friends) is supported as far back as IE 8 and even old Android, so it’s pretty safe!
Using Floats
We can use our good friend the float to arrange the containers beside each other. The benefit here is that it avoids absolute positioning (which as we noted, can be messy).
CodePen Embed Fallback
In this example, we’re explicitly setting heights to get them to be even. But you don’t really get that ability with floats by default. You could use the background gradient trick we already covered so they just look even. Or look at fancy negative margin tricks and the like.
Also, remember you may need to clear the floats on the parent element to keep the document flow happy.
Using Inline-Block
If clearing elements after floats seems like a burden, then using display: inline-block is another option. The trick here is to make sure that the elements for the individual sides have no breaks or whitespace in between them in the HTML. Otherwise, that space will be rendered as a literal space and the second half will break and fall.
CodePen Embed Fallback
Again there is nothing about inline-block that helps us equalize the heights of the sides, so you’ll have to be explicit about that.
There are also other potential ways to deal with that spacing problem described above.
Using this method, we turn our parent container into a flexible box with the child containers taking up an equal share of the space. No need to set widths or heights! Flexbox just knows what to do, because the defaults are set up perfectly for this. For instance, flex-direction: row; and align-items: stretch; is what we’re after, but those are the defaults so we don’t have to set them. To make sure they are even though, setting flex: 1; on the sides is a good plan. That forces them to take up equal shares of the space.
CodePen Embed Fallback
In this demo we’re making the side flex containers as well, just for fun, to handle the vertical and horizontal centering.
Using Grid Layout
For those living on the bleeding edge, the CSS Grid Layout technique is like the Flexbox and Table methods merged into one. In other words, a container is defined, then split into columns and cells which can be filled flexibly with child elements.
CodePen Embed Fallback
CSS Anchor Positioning
This started rolling out in 2024 and we’re still waiting for full browser support. But we can use CSS Anchor Positioning to “attach” one element to another — even if those two elements are completely unrelated in the markup.
The idea is that we have one element that’s registered as an “anchor” and another element that’s the “target” of that anchor. It’s like the target element is pinned to the anchor. And we get to control where we pin it!
This sets up an .anchor and establishes a relationship with a .target element. From here, we can tell the target which side of the anchor it should pin to.
Terence Eden on using text-wrap: balance for more than headings:
But the name is, I think, slightly misleading. It doesn’t only work on text. It will work on any content. For example – I have a row of icons at the bottom of this page. If the viewport is too narrow, a single icon might drop to the next line. That can look a bit weird.
Heck yeah. I may have reached for some sort of auto-fitting grid approach, but hey, may as well go with a one-liner if you can! And while we’re on the topic, I just wanna mention that, yes, text-wrap: balance will work on any content. — just know that the spec is a little opinionated on this and make sure that the content is fewer than five lines.
Suggestion for value space is match-indent | | (with Xch given as an example to make that use case clear). Alternately could actually count the characters.
The difference between Popovers (i.e., the popover attribute) and Dialogs (i.e., both the element and the dialog accessible role) is incredibly confusing — so much that many articles (like this, this, and this) have tried to shed some light on the issue.
If you’re still feeling confused, I hope this one clears up that confusion once and for all.
Distinguishing Popovers From Dialogs
Let’s pull back on the technical implementations and consider the greater picture that makes more sense and puts everything into perspective.
The reason for this categorization comes from a couple of noteworthy points.
First, we know that a popover is content that “pops” up when a user clicks a button (or hovers over it, or focuses on it). In the ARIA world, there is a useful attribute called aria-haspopup that categorizes such popups into five different roles:
menu
listbox
tree
grid
dialog
Strictly speaking, there’s a sixth value, true, that evaluates to menu. I didn’t include it above since it’s effectively just menu.
By virtue of dialog being on this list, we already know that dialog is a type of popover. But there’s more evidence behind this too.
The Three Types of Dialogues
Since we’re already talking about the dialog role, let’s further expand that into its subcategories:
Dialogs can be categorized into three main kinds:
Modal: A dialog with an overlay and focus trapping
Non-Modal: A dialog with neither an overlay nor focus trapping
Alert Dialog: A dialog that alerts screen readers when shown. It can be either modal or non-modal.
This brings us to another reason why a dialog is considered a popover.
Some people may say that popovers are strictly non-modal, but this seems to be a major misunderstanding — because popovers have a ::backdrop pseudo-element on the top layer. The presence of ::backdrop indicates that popovers are modal. Quoting the CSS-Tricks almanac:
The ::backdrop CSS pseudo-element creates a backdrop that covers the entire viewport and is rendered immediately below a , an element with the popup attribute, or any element that enters fullscreen mode using the Fullscreen API.
That said, I don’t recommend using the Popover API for modality because it doesn’t have a showModal() method (that has) that creates inertness, focus trapping, and other necessary features to make it a real modal. If you only use the Popover API, you’ll need to build those features from scratch.
So, the fact that popovers can be modal means that a dialog is simply one kind of popover.
A Popover Needs an Accessible Role
Popovers need a role to be accessible. Hidde has a great article on selecting the right role, but I’m going to provide some points in this article as well.
To start, you can use one of the aria-haspopup roles mentioned above:
menu
listbox
tree
grid
dialog
You could also use one of the more complex roles like:
treegrid
alertdialog
There are two additional roles that are slightly more contentious but may do just fine.
tooltip
status
To understand why tooltip and status could be valid popover roles, we need to take a detour into the world of tooltips.
A Note on Tooltips
From a visual perspective, a tooltip is a popover because it contains a tiny window that pops up when the tooltip is displayed.
I included tooltip in the mental model because it is reasonable to implement tooltip with the Popover API.
But, from an accessibility standpoint, tooltips are not popovers. In the accessibility world, tooltips must not contain interactive content. If they contain interactive content, you’re not looking at a tooltip, but a dialog.
This is also why aria-haspopup doesn’t include tooltip —aria-haspopup is supposed to signify interactive content but a tooltip must not contain interactive content.
With that, let’s move on to status which is an interesting role that requires some explanation.
Why status?
Tooltips have a pretty complex history in the world of accessible interfaces so there’s a lot of discussion and contention over it.
To keep things short (again), there’s an accessibility issue with tooltips since tooltips should only show on hover. This means screen readers and mobile phone users won’t be able to see those tooltips (since they can’t hover on the interface).
Steve Faulkner created an alternative — toggletips — to fill the gap. In doing so, he explained that toggletip content must be announced by screen readers through live regions.
When initially displayed content is announced by (most) screen readers that support aria-live
Heydon Pickering later added that status can be used in his article on toggletips.
We can supply an empty live region, and populate it with the toggletip “bubble” when it is invoked. This will both make the bubble appear visually and cause the live region to announce the tooltip’s information.
This is why status can be a potential role for a popover, but you must use discretion when creating it.
That said, I’ve chosen not to include the status role in the Popover mental model because status is a live region role and hence different from the rest.
In Summary
Here’s a quick summary of the mental model:
Popover is an umbrella term for any kind of on-demand popup.
Dialog is one type of popover — a kind that creates a new window (or card) to contain some content.
When you internalize this, it’s not hard to see why the Popover API can be used with the dialog element.
<!-- Uses the popover API. Role needs to be determined manually -->
<div popover>...</div>
<!-- Dialog with the popover API. Role is dialog -->
<dialog popover>...</dialog>
<!-- Dialog that doesn't use the popover API. Role is dialog -->
<dialog>...</dialog>
When choosing a role for your popover, you can use one of these roles safely.
menu
listbox
tree
grid
treegrid
dialog
alertdialog
The added benefit is most of these roles work together with aria-haspopup which gained decent support in screen readers last year.
Of course, there are a couple more you can use like status and tooltip, but you won’t be able to use them together with aria-haspopup.
There’s a lot of math behind fluid typography. CSS does make the math a lot easier these days, but even if you’re comfortable with that, writing the full declaration can be verbose and tough to remember. I know I often have to look it back up, despite having written it maybe a hundred times.
He says ChatGPT did the initial lifting before he refined it. I can get behind this sort of AI-flavored usage. Start with an idea, find a starting point, look deeper at it, and shape it into something incredibly useful for a small, single purpose.
I’m utterly behind in learning about scroll-driven animations apart from the “reading progress bar” experiments all over CodePen. Well, I’m not exactly “green” on the topic; we’ve published a handful of articles on it including this neat-o one by Lee Meyer published the other week.
Our “oldest” article about the feature is by Bramus, dated back to July 2021. We were calling it “scroll-linked” animation back then. I specifically mention Bramus because there’s no one else working as hard as he is to discover practical use cases where scroll-driven animations shine while helping everyone understand the concept. He writes about it exhaustively on his personal blog in addition to writing the Chrome for Developers documentation on it.
But there’s also this free course he calls “Unleash the Power of Scroll-Driven Animations” published on YouTube as a series of 10 short videos. I decided it was high time to sit, watch, and learn from one of the best. These are my notes from it.
Introduction
A scroll-driven animation is an animation that responds to scrolling. There’s a direct link between scrolling progress and the animation’s progress.
Scroll-driven animations are different than scroll-triggered animations, which execute on scroll and run in their entirety. Scroll-driven animations pause, play, and run with the direction of the scroll. It sounds to me like scroll-triggered animations are a lot like the CSS version of the JavaScript intersection observer that fires and plays independently of scroll.
Why learn this? It’s super easy to take an existing CSS animation or a WAAPI animation and link it up to scrolling. The only “new” thing to learn is how to attach an animation to scrolling. Plus, hey, it’s the platform!
There are also performance perks. JavsScript libraries that establish scroll-driven animations typically respond to scroll events on the main thread, which is render-blocking… and JANK! We’re working with hardware-accelerated animations… and NO JANK. Yuriko Hirota has a case study on the performance of scroll-driven animations published on the Chrome blog.
Supported in Chrome 115+. Can use @supports (animation-timeline: scroll()). However, I recently saw Bramus publish an update saying we need to look for animation-range support as well.
@supports ((animation-timeline: scroll()) and (animation-range: 0% 100%)) {
/* Scroll-Driven Animations related styles go here */
/* This check excludes Firefox Nightly which only has a partial implementation at the moment of posting (mid-September 2024). */
}
Remember to use prefers-reduced-motion and be mindful of those who may not want them.
@keyframes grow-progress {
from {
transform: scaleX(0);
}
to {
transform: scaleX(1);
}
}
#progress {
animation: grow-progress 2s linear forwards;
}
Translation: Start with no width and scale it to its full width. When applied, it takes two seconds to complete and moves with linear easing just in the forwards direction.
This just runs when the #progress element is rendered. Let’s attach it to scrolling.
animation-timeline: The timeline that controls the animation’s progress.
scroll(): Creates a new scroll timeline set up to track the nearest ancestor scroller in the block direction.
#progress {
animation: grow-progress 2s linear forwards;
animation-timeline: scroll();
}
That’s it! We’re linked up. Now we can remove the animation-duration value from the mix (or set it to auto):
#progress {
animation: grow-progress linear forwards;
animation-timeline: scroll();
}
Note that we’re unable to plop the animation-timeline property on the animation shorthand, at least for now. Bramus calls it a “reset-only sub-property of the shorthand” which is a new term to me. Its value gets reset when you use the shorthand the same way background-color is reset by background. That means the best practice is to declare animation-timelineafteranimation.
Let’s talk about the scroll() function. It creates an anonymous scroll timeline that “walks up” the ancestor tree from the target element to the nearest ancestor scroll. In this example, the nearest ancestor scroll is the :root element, which is tracked in the block direction.
We can name scroll timelines, but that’s in another video. For now, know that we can adjust which axis to track and which scroller to target in the scroll() function.
animation-timeline: scroll(<axis> <scroller>);
: The axis — be it block (default), inline, y, or x.
: The scroll container element that defines the scroll position that influences the timeline’s progress, which can be nearest (default), root (the document), or self.
If the root element does not have an overflow, then the animation becomes inactive. WAAPI gives us a way to establish scroll timelines in JavaScript with ScrollTimeline.
const $progressbar = document.querySelector(#progress);
$progressbar.style.transformOrigin = '0% 50%';
$progressbar.animate(
{
transform: ['scaleX(0)', 'scaleY()'],
},
{
fill: 'forwards',
timeline: new ScrollTimeline({
source: document.documentElement, // root element
// can control `axis` here as well
}),
}
)
First, we oughta distinguish a scroll container from a scroll port. Overflow can be visible or clipped. Clipped could be scrolling.
Those two bordered boxes show how easy it is to conflate scrollports and scroll containers. The scrollport is the visible part and coincides with the scroll container’s padding-box. When a scrollbar is present, that plus the scroll container is the root scroller, or the scroll container.
A view timeline tracks the relative position of a subject within a scrollport. Now we’re getting into IntersectionObserver territory! So, for example, we can begin an animation on the scroll timeline when an element intersects with another, such as the target element intersecting the viewport, then it progresses with scrolling.
Bramus walks through an example of animating images in long-form content when they intersect with the viewport. First, a CSS animation to reveal an image from zero opacity to full opacity (with some added clipping).
This currently runs on the document’s timeline. In the last video, we used scroll() to register a scroll timeline. Now, let’s use the view() function to register a view timeline instead. This way, we’re responding to when a .revealing-image element is in, well, view.
.revealing-image {
animation: reveal 1s linear both;
/* Rember to declare the timeline after the shorthand */
animation-timeline: view();
}
At this point, however, the animation is nice but only completes when the element fully exits the viewport, meaning we don’t get to see the entire thing. There’s a recommended way to fix this that Bramus will cover in another video. For now, we’re speeding up the keyframes instead by completing the animation at the 50% mark.
We know from the scroll() function — it’s the same deal. The is a way of adjusting the visibility range of the view progress (what a mouthful!) that we can set to auto (default) or a . A positive inset moves in an outward adjustment while a negative value moves in an inward adjustment. And notice that there is no argument — a view timeline always tracks its subject’s nearest ancestor scroll container.
OK, moving on to adjusting things with ViewTimeline in JavaScript instead.
const $images = document.querySelectorAll(.revealing-image);
$images.forEach(($image) => {
$image.animate(
[
{ opacity: 0, clipPath: 'inset(45% 20% 45% 20%)', offset: 0 }
{ opacity: 1; clipPath: 'inset(0% 0% 0% 0%)', offset: 0.5 }
],
{
fill: 'both',
timeline: new ViewTimeline({
subject: $image,
axis: 'block', // Do we have to do this if it's the default?
}),
}
}
)
This has the same effect as the CSS-only approach with animation-timeline.
Last time, we adjusted where the image’s reveal animation ends by tweaking the keyframes to end at 50% rather than 100%. We could have played with the inset(). But there is an easier way: adjust the animation attachment range,
Most scroll animations go from zero scroll to 100% scroll. The animation-range property adjusts that:
animation-range: normal normal;
Those two values: the start scroll and end scroll, default:
The example we’re looking at is a “full-height cover card to fixed header”. Mouthful! But it’s neat, going from an immersive full-page header to a thin, fixed header while scrolling down the page.
Like the revealing images from the last video, we want the animation range a little narrower to prevent the header from animating out of view. Last time, we adjusted the keyframes. This time, we’re going with the property approach:
We had to subtract the full height (100vh) from the header’s eventual height (10vh) to get that 90vh value. I can’t believe this is happening in CSS and not JavaScript! Bramus sagely notes that font-size animation happens on the main thread — it is not hardware-accelerated — and the entire scroll-driven animation runs on the main as a result. Other properties cause this as well, notably custom properties.
Back to the animation range. It can be diagrammed like this:
Notice that there are four points in there. We’ve only been chatting about the “start edge” and “end edge” up to this point, but the range covers a larger area in view timelines. So, this:
animation-range: 0% 100%; /* same as 'normal normal' */
So, yeah. That revealing image animation from the last video? We could have done this, rather than fuss with the keyframes or insets:
animation-range: cover 0% cover 50%;
So nice. The demo visualization is hosted at scroll-driven-animations.style. Oh, and we have keyword values available: contain, entry, exit, entry-crossing, and exit-crossing.
The examples so far are based on the scroller being the root element. What about ranges that are taller than the scrollport subject? The ranges become slightly different.
This is where the entry-crossing and entry-exit values come into play. This is a little mind-bendy at first, but I’m sure it’ll get easier with use. It’s clear things can get complex really quickly… which is especially true when we start working with multiple scroll-driven animation with their own animation ranges. Yes, that’s all possible. It’s all good as long as the ranges don’t overlap. Bramus uses a contact list demo where contact items animate when they enter and exit the scrollport.
Core Concepts: Timeline Lookup and Named Timelines
This time, we’re learning how to attach an animation to any scroll container on the page without needing to be an ancestor of that element. That’s all about named timelines.
But first, anonymous timelines track their nearest ancestor scroll container.
Hiding overflow means that the element’s content block is clipped to its padding box and does not provide any scrolling interface. However, the content must still be scrollable programmatically meaning this is still a scroll container. That’s an easy gotcha if there ever was one! The better route is to use overflow: clipped rather than hidden because that prevents the element from becoming a scroll container.
Hiding oveflow = scroll container. Clipping overflow = no scroll container. Bramus says he no longer sees any need to use overflow: hidden these days unless you explicitly need to set a scroll container. I might need to change my muscle memory to make that my go-to for hiding clipping overflow.
Another funky thing to watch for: absolute positioning on a scroll animation target in a relatively-positioned container. It will never match an outside scroll container that is scroll(inline-nearest) since it is absolute to its container like it’s unable to see out of it.
We don’t have to rely on the “nearest” scroll container or fuss with different overflow values. We can set which container to track with named timelines.
.gallery {
position: relative;
}
.gallery__scrollcontainer {
overflow-x: scroll;
scroll-timeline-name: --gallery__scrollcontainer;
scroll-timeline-axis: inline; /* container scrolls in the inline direction */
}
.gallery__progress {
position: absolute;
animation: progress linear forwards;
animation-timeline: scroll(inline nearest);
}
We can shorten that up with the scroll-timeline shorthand:
Bramus showed a demo that recreates Apple’s old cover-flow pattern. It runs two animations, one for rotating images and one for setting an image’s z-index. We can attach both animations to the same view timeline. So, we go from tracking the nearest scroll container for each element in the scroll:
.covers li {
view-timeline-name: --li-in-and-out-of-view;
view-timeline-axis: inline;
animation: adjust-z-index linear both;
animation-timeline: view(inline);
}
.cards li > img {
animation: rotate-cover linear both;
animation-timeline: view(inline);
}
…and simply reference the same named timelines:
.covers li {
view-timeline-name: --li-in-and-out-of-view;
view-timeline-axis: inline;
animation: adjust-z-index linear both;
animation-timeline: --li-in-and-out-of-view;;
}
.cards li > img {
animation: rotate-cover linear both;
animation-timeline: --li-in-and-out-of-view;;
}
In this specific demo, the images rotate and scale but the updated sizing does not affect the view timeline: it stays the same size, respecting the original box size rather than flexing with the changes.
Phew, we have another tool for attaching animations to timelines that are not direct ancestors: timeline-scope.
timeline-scope: --example;
This goes on an parent element that is shared by both the animated target and the animated timeline. This way, we can still attach them even if they are not direct ancestors.
In this example, we’re conditionally showing scroll shadows on a scroll container. Chris callsscroll shadows one his favorite CSS-Tricks of all time and we can nail them with scroll animations.
Here is the demo Chris put together a few years ago:
CodePen Embed Fallback
That relies on having a background with multiple CSS gradients that are pinned to the extremes with background-attachment: fixed on a single selector. Let’s modernize this, starting with a different approach using pseudos with sticky positioning:
@keyframes reveal {
0% { opacity: 0; }
100% { opacity: 1; }
}
.container {
overflow:-y auto;
scroll-timeline: --scroll-timeline block; /* do we need `block`? */
&::before,
&::after {
animation: reveal linear both;
animation-timeline: --scroll-timeline;
}
}
This example rocks a named timeline, but Bramus notes that an anonymous one would work here as well. Seems like anonymous timelines are somewhat fragile and named timelines are a good defensive strategy.
The next thing we need is to set the animation’s range so that each pseudo scrolls in where needed. Calculating the range from the top is fairly straightforward:
.container::before {
animation-range: 1em 2em;
}
The bottom is a little tricker. It should start when there are 2em of scrolling and then only travel for 1em. We can simply reverse the animation and add a little calculation to set the range based on it’s bottom edge.
Still one more thing. We only want the shadows to reveal when we’re in a scroll container. If, for example, the box is taller than the content, there is no scrolling, yet we get both shadows.
This is where the conditional part comes in. We can detect whether an element is scrollable and react to it. Bramus is talking about an animation keyword that’s new to me: detect-scroll.
@keyframes detect-scroll {
from,
to {
--can-scroll: ; /* value is a single space and acts as boolean */
}
}
.container {
animation: detect-scroll;
animation-timeline: --scroll-timeline;
animation-fill-mode: none;
}
Gonna have to wrap my head around this… but the general idea is that --can-scroll is a boolean value we can use to set visibility on the pseudos:
The goal is getting the two outer reverse columns to scroll in the opposite direction as the inner column scrolls in the other direction. Classic JavaScript territory!
The columns are set up in a grid container. The columns flex in the column direction.
/* run if the browser supports it */
@supports (animation-timeline: scroll()) {
.column-reverse {
transform: translateY(calc(-100% + 100vh));
flex-direction: column-reverse; /* flows in reverse order */
}
.columns {
overflow-y: clip; /* not a scroll container! */
}
}
First, the outer columns are pushed all the way up so the bottom edges are aligned with the viewport’s top edge. Then, on scroll, the outer columns slide down until their top edges re aligned with the viewport’s bottom edge.
The CSS animation:
@keyframes adjust-position {
from /* the top */ {
transform: translateY(calc(-100% + 100vh));
}
to /* the bottom */ {
transform: translateY(calc(100% - 100vh));
}
}
.column-reverse {
animation: adjust-position linear forwards;
animation-timeline: scroll(root block); /* viewport in block direction */
}
First, the scroll-driven animation. We’re attaching an animation to the component but not defining the keyframes just yet.
@keyframes foo {
}
model-viewer {
animation: foo linear both;
animation-timeline: scroll(block root); /* root scroller in block direction */
}
There’s some JavaScript for the full rotation and orientation:
// Bramus made a little helper for handling the requested animation frames
import { trackProgress } from "https://esm.sh/@bramus/sda-utilities";
// Select the component
const $model = document.QuerySelector("model-viewer");
// Animation begins with the first iteration
const animation = $model.getAnimations()[0];
// Variable to get the animation's timing info
let progress = animation.effect.getComputedTiming().progress * 1;
// If when finished, $progress = 1
if (animation.playState === "finished") progress = 1;
progress = Math.max(0.0, Math.min(1.0, progress)).toFixed(2);
// Convert this to degrees
$model.orientation = `0deg 0deg $(progress * -360)deg`;
We’re using the effect to get the animation’s progress rather than the current timed spot. The current time value is always measured relative to the full range, so we need the effect to get the progress based on the applied animation.
Bramus goes full experimental and uses Scroll-Driven Animations to detect the active scroll speed and the directionality of scroll. Detecting this allows you to style an element based on whether the user is scrolling (or not scrolling), the direction they are scrolling in, and the speed they are scrolling with … and this all using only CSS.
First off, this is a hack. What we’re looking at is expermental and not very performant. We want to detect the animations’s velocity and direction. We start with two custom properties.
@keyframes adjust-pos {
from {
--scroll-position: 0;
--scroll-position-delayed: 0;
}
to {
--scroll-position: 1;
--scroll-position-delayed: 1;
}
}
:root {
animation: adjust-pos linear both;
animation-timeline: scroll(root);
}
Let’s register those custom properties so we can interpolate the values:
As we scroll, those values change. If we add a little delay, then we can stagger things a bit:
:root {
animation: adjust-pos linear both;
animation-timeline: scroll(root);
}
body {
transition: --scroll-position-delayed 0.15s linear;
}
The fact that we’re applying this to the body is part of the trick because it depends on the parent-child relationship between html and body. The parent element updates the values immediately while the child lags behind just a tad. The evaluate to the same value, but one is slower to start.
We can use the difference between the two values as they are staggered to get the velocity.
Clever! If --scroll-velocity is equal to 0, then we know that the user is not scrolling because the two values are in sync. A positive number indicates the scroll direction is down, while a negative number indicates scrolling up,.
There’s a little discrepancy when scrolling abruptly changes direction. We can fix this by tighening the transition delay of --scroll-position-delayed but then we’re increasing the velocity. We might need a multiplier to further correct that… that’s why this is a hack. But now we have a way to sniff the scrolling speed and direction!
This is a little funny because I’m seeing that Chrome does not yet support sign() or abs(), at least at the time I’m watching this. Gotta enable chrome://flags. There’s a polyfill for the math brought to you by Ana Tudor right here on CSS-Tricks.
So, now we could theoretically do something like skew an element by a certain amount or give it a certain level of background color saturation depending on the scroll speed.